
4

_7

J

L

t I Ht H iflllttitiilllllllF}lllll H lti)|[tJ |[U |l.lJ |Li

ITS TEOFTECHHOL06Y

RE-19

A SPECIAL-PURPOSE INTERPLANETARY
TRAJECTORYCOMPUTATION PROGRAM

FORGUIDANCE AND NAVIGATION STUDIES

by

William T. McDonald

July 1965

GPO PRICE $

CFSTI PRICE(S) $

-: Hard copy (HC) _<_ ('J'-'C)

• Microfiche (MF) "7 _
r

ff 653 Juiy 65

_> llXillllRI M'H I__'

> [: _ _-._ _ ,

https://ntrs.nasa.gov/search.jsp?R=19660021025 2019-01-01T11:55:21+00:00Z

RE-19

A SPECIAL-PURPOSE INTERPLANETARY TRAJECTORY

COMPUTATION PROGRAM FOR GUIDANCE AND NAVIGATION STUDIES

by

William T. McDonald

Experimental Astronomy Laboratory

Massachusetts institute of Technology

Cambridge, Massachusetts, 02139

Approved:
Director,

Experimental Astronomy Laboratory

ACKNOW LEDGMENT

The program was prepared with the guidance and assistance of a

number of persons at the M.I.T. Experimental Astronomy Laboratory.

Professor James E. Potter guided the preparation of the program at all

key stages, devised the new formulation of Kepler's problem for hyperbolic

orbits, and directed the use of the NystrIZm integration technique and the

preparation of the time step computation technique. Dr. Robert G. Stern

and Mr. Gary L. Slater devoted much time and interest to fruitful discus-

sions and contributed many helpful suggestions, Mr. William E. Margolis

gave much programming advice and assistance.

Acknowledgment is made for the use of the IBM 7094 computer at

the M.[.T. Computation Center. The development of this program was

done as problem # M3938.

This effort was supported entirely by DSR Project 6145 through

N/_SA Grant NsG 254-62.

RE-19

A SPECIAL-PURPOSEINTERPLANETARYTRAJECTORY
COMPUTATIONPROGRAMFORGUIDANCEANDNAVIGATIONSTUDIES

This report containsa technical description of an interplanetary tra-
jectory computationprogram written specifically to beusedin making
comparativeevaluationsof interplanetary guidanceandnavigationtechniques.
The special requirementsfor this purposeare defined, andthe correspon-
ding capabilities of the programare explained. Chiefamongtheseare
simultaneousstate andstate transition matrix integration;a fixed time of
arrival, fixed target point trajectory search capability; computationof tra-
jectories in either time direction; easeof modification by non-professional
programmers; andability to bebatch-processedin a high speed,high
volumecomputationcenter.

Somecomputationaltechniquesdevelopedin thepreparationof this
program whichmay haveuseful applicationsin other programs for other
purposesare explainedin detail. Theseincludea linear trajectory search
methodbasedon the linearized state transition matrix, a newformulation
of thehyperbolic Kepler problemfor highprecision conic computations,
anda uniqueaccuracy self-checkmethodbasedon forward andbackward
trajectory integration.

Computationalerror sourcesare discussedandtypical accuracy
dataare given. Theprogram subroutinestructure andfunctionalflow are
described briefly. A companiondocument,the program User's Manual,
contains more detailed information aboutthe program structure.

Dataare presentedto illustrate operationof the single-precision
version of the program. A double-precisionversion is also available.Both
single-anddouble-precisionversions are available in FORTRANII and
FORTRANIV languages.

William T. McDonald
July 1965

ii

Chapter

I

[I

[II

TABLE OF CONTENTS

INTRODUCTIC, N

GENERAL PP,.OGILAM DISCRIPTION

g. 1

2.2

Progran', Operation Characteristics

g. 1 1 State and State Transition Matrix

Integration 5

2. 1 2 Reference Coordinates and Units 5

Z. 1 _ Two-directional Integration Capability
and Closed-loop Accuracy Check 6

g. 1 4 Simplified Ephemeris Generation 7

2. 1. 5 Trajectory Search Capability 7

g. 1. 6 Coperating Modes and Printout 8

2. 1. 6. 1 Mode 1 8

2. 1. 6. 2 Mode 2 10

2. 1. 6. 3 Mode 3 10

2. 1. 6.4 Special Printout Provision 10

2. 1. 7 Osculating Conic Data Option 11

Computational Accuracy 1 Z

2. g. 1 Error Sources 12

2. 2. 1. 1 Truncation and Roundoff

Errors 1P.

P.. 2. 1. 2 Loss of Precision at Phase

Changes and Encke Conic Recti-
fications 13

2. g. 1.3 Errors in the Hyperbolic Encke

Conic Computation 14

g. Z. ?. Computational Accuracy Checks 14

g. g. 2-. 1 Search Noise Level 14

P_. 2_. 2_. 2. State Transition Matrix Accuracy
Checks

2. 2. 2.3 Closed-loop Accuracy Check

2_. 2-. 3 Typical Accuracy Data

COMPUTATION METHODS AND TECHNIQUES

State Integration Method

State Transition Matrix Integration Method

Numerical Integration Technique

Conic Computation Method

3.1

3.2

3.3

3.4

3.5

3.6

3.7

I

5

5

15

19

19

21

21

23

25

26

Time Step Computation Method 33

Trajectory Phase Determination Method 34

Trajectory Search Method 35

iii

Chapt e r

IV

APPENDIX A

APPENDIX B

APPENDIX C

TABLE OF CCNTENTS (cont.)

PROGRAM STRUCTURE AND FUNCTIONAL FL£)W 39

4. I MAIN Program 39

4. 2 [NTEG Subroutine 42

4.3 ENCq)N Subroutine 43

4, 4 GRAVF_9 Subroutine 43

4. 5 EPHEM Subroutine 44

4. 6 PRINTT Subroutine 44

4.7 _SC_N Subroutine 44

4. 8 TIME Subroutine 45

4.9 AXB Subroutine 45

4. l0 VMAG Function Subprogram 45

4. ll AD_TB Function Subprogram 45

DERIVATION OF NEW FORMUi,ATION OF

KEPLER'S PROBLEM FOR HYPERBOLAE 47

TIME STEP FORMULA DERIVATION 55

ANALYSIS OF THE ERRORS REFLECTED BY THE CC -.1

AND RMS MATRICES 59

REFERENCES 67

iv

CHAPTER I

INTRODUCTION

This program has been written to implement studies of guidance

and navigation techniques for interplanetary flight. It computes

point mass interplanetary trajectories in a many-body gravitational

field and other necessary data. The program serves as an evaluation

standard in these studies: that is. it is first used to search for

and establish nominal trajectories _nd to compute state trensition

m_trices at points along these trajectories. Then it is used to com-

pute, by means of the non-line2r many body equations of motion, the

t_rget miss due to deviations measured or corrections m_de along

nomin_l trajectory _ccording to the methods of the navigation or gui-

dance techniques under study. The results evalu_te the accuracies of

the techniques.

The program requirements for these technique studies are funda-

mentally different from the requirements of other programs intended

for spacecraft targeting or launch window analysis, and these dif-

ferent requirements have justified the cost of preparing this new pro-

gram. Firstly, the program is required to compute the state transi-

tion matrix, in addition to the state vector, which is a fundamental

matrix used in nearly all linearized guidance and navigation tech-

niques. Secondly, since the evaluation of a technique requires mul-

tiple computations of effects of deviations or corrections for several

different types of missions, the program must operate economically.

This in turn requires not only high processing speed, but also that

the program meet the requirements of high-production automatic batch

processing at the MIT Computation Center. Thirdly, to allow for

changing requirements of a variety of anticipated studies by engineer-

ing personnel, the program is required to have the capability of easy

modification by non-professional programmers.

A number of tradeoffs have been necessary in designing the pro-

gram to accomplish these requirements, since the requirements conflict

to some extent. The program is written in FORTRAN II for the IBM 7094

computer at the MIT Computation Center, and a FORTRAN IV version has

been prepared for the IBM System 360. The use of a more efficient

-! _

language, such as FAP, would enhance the processing speed consider-
ably; but non-professional programmers would not be able to easily

n_odify the program. The requirements of high-production batch pro-

cessing are that the program operate with a standard monitor system

and that no input data tapes (e.g. tape-stored ephemerides) be used.

Programs which do not meet these requirements must be processed with

special handling procedures, and this seriously curtails the use of

such a program for studies involving a large amount of computation.

However, the intended use of this program for guidance and navigation

technique evaluations does not require highly precise planet ephemer-

ides, and thus internal computation of ephemerides is permitted. The

basic reason for this is that, as long as the solar system model used

in the program is a reasonably realistic representation of the actual

solar system, the absolute accuracy of a technique can be determined

to within at least an order of magnitude and, furthermore, the rela-

tive accuracies of different techniques can be determined precisely.

Accordingly, the present program uses a simplified solar system model

in which the motion of the Sun is neglected, the included planets are

Venus, Earth, Mars, Jupiter, and Saturn, the influences of the Moon

and other solar system bodies are neglected, harmonics in the planet

gravitational potentials are neglected, solar radiation pressure is

neglected, and the planet ephemerides are computed by means of oscu-

lating conics approximating the planet orbits. This simplified meth-

od of ephemeris generation also facilitates fast trajectory integra-

tion backward in time _s _ell as forward, which is a very useful

capability in state transition matrix computations.

This program, per se, is very useful for the intended special

purpose. The imprecise solar system model, of course, renders it

inapplicable to any type of study requiring a highly accurate compu-

tation of a real interplanetary trajectory. (Provision has been made,

though, to modify it to use tape - stored precise planet ephemerides

and to include the neglected influences should the need arise.) How-

ever, in the preparation of this program some rather novel trajectory

computation techniques have been developed which individually have

wider potential applicability to trajectory programs for other pur-

poses. These special techniques are listed below.

i. Trajectory computation both forward and backward in

time and the use of this capability for a "closed loop"

accuracy check in the program.

Z-

2. Use of the state transition matrix to mechanize _ sim-

ple dnd efficient trajectory search procedure.

3. A new formulation of Kepler's problem for hyperbolic

conics for high precision computation, which _chieves a

very significant improvement in the computational accur=,cy

of the conic position _nd velocity used in the Encke method.

These techniques are explained in considerable detail in Chapter

III, since they may have an dpplic_tion to _ wider range of trajec-

tory computation problems. In the following section, Chapter II, a

general description of the program is given. Methods and capabilities

that are standard are only mentioned, but certain of the computation_l

methods which _re not standard and the special techniques listed above

are described in deti_il in Chapter III. Chdpter IV briefly describes

the program functional flow _nd the functions of the individual sub-

programs. Detailed flow ch_rts, d_ta format descriptions, and pro-

gram listings will be found in the companion document, the program

Users' Manual (Reference I).

The technical descriptions given in this document apply both

to the single-precision and double-precision versions of the program.

There Jre, of course, significant differences in the program struc--

tures for the two versions, but these are described in the Users'

_nual (Reference i).

-3 -

CHAPTERII

GENERAL PROGRAM DESCRIPTION

2.____i Program Operating Chdracteristics

2.1.1 State and State Transition Matrix Integration

The program computes the state vector by integrating the many

body equations of motion and the state transition matrix by integra-

ting the state vdriational equations. The two integrations are done

simultaneously, so that one pass of the program yields both the state

and state transition matrix as required. The state transition matrix

is, of course, state-dependent, and the way in which the two integra-

tions are folded together is described in Sections 3.1 and 3.2. The

state integration is done by Encke's method, and the numerical inte-

gration technique used is Nystr_m's method (Section 3.3). The inte-

grations start with specified initial conditions (an initial stdte

for the stdte integration and an identity matrix for the state tran-

sition matrix integration) and proceed until the specified time of

flight has elapsed.

2.1.2 Reference Coordinates and Units

The reference coordinates for the computations are determined by

reference planet ephemerides which are entered as input data. These

ephemerides must always be expressed in heliocentric non-rotating,

non-accelerating coordinates; ecliptic coordinates of a reference

date (usually 1950.0) are almost dlways used in the studies in this

laboratory, but heliocentric equatorial or other coordinates may be

used equally well. These ephemeris reference coordinates then estab-

lish the directions of the reference coordinates of the progrdm.

However, the program reference coordinates are planetocentric or

heliocentric in different phases of the trajectory, depending upon

which of the bodies in the solar system exerts the primary influence

determining that trajectory phase. The initial phase is specified in

the program input data, and the initial stdte vector must be speci-

fied in the reference coordinates centered at the primary body of

the initial phase. For example, if ecliptic reference coordinates

5 -

are used, for an Earth injection the initial phase is earth-centered

and the initial state vector must be specified in Earth-centered

ecliptic coordinates. After the initial point a phase determination

is made at the end of each time step of the integration according to

the test described in Section 3.6, and phase changes take place auto-

matically when the test indicates the necessity. The phase change

procedure is simple vector addition or subtraction of the reference

body ephemerides and the spacecraft state. Since no coordinate rota-

tion occurs at a phase change, no change is required in the state

transition matrix.

Computational units used in the program are kilometers (distance),

km/sec (velocity), and seconds (time). The reference planet ephem-

erides are entered in units of a.u. and a.u./day, because these units

are used in the source of planet ephemerides. Conversion to km

and km/sec is done in the program. The zero time reference in the

program is immaterial, as long as the start time, end time, and ep-

ochs of the reference ephemerides specified in the input data all have

a common zero time reference. For computational purpose the program

sets the start time to zero and reckons all times from this reference.

2.1.3 Two-directional _nteqration Capability and Closed-loop

Accuracy Check

As mentioned in the Introduction, the program has the capability

of trajectory integration backward as well as forward in time. This

capability facilitates economical computation of state transition

matrices at several reguired points along a trajectory. For example,

suppose that along an Earth-Mars transfer it is planned to make cor-

rections at three points by means of a guidance technique using the

integrated state transition matrix. Then the matrices relating tar-

get point miss to state deviations measured at each of the three

points are required. With integration backward in time from Mars to

Earth the nominal trajectory and all three required matrices can be

generated directly by a single integration, while more complex com-

putations are required if only integration forward in time is allowed.

This forward-backward integration capability provides the pro-

gram with a rather unique "closed-loop" accuracy check. This accu-

racy check works as follows. A trajectory between a starting point

and a target point is found by integration in, say, the forward time

direction. Then a reverse integration is performed using the precise

terminal state from the forward integration as the initi_l condition.

_

might be characterized as the fixed time of transfer, many-body Lam-

bert problem. The search computations are linear, and, as explained

in Section 3.7, the range of misses for which the linear search con-

verges is as large as about half the distance of the target point

from the Sun in cases tested to date. For example, if the target

point is in the near vicinity of a target planet, if the miss on a

search iteration is so large that the trajectory endpoint lies out-

side the sphere of influence, the search computations are done in

heliocentric coordinates, and the range of linearity is then deter-

mined by the ratio of the miss and the heliocentric target point ra-

dius. Table 3-1 in Section 3.7 shows some typical examples illustra-

ting the efficiency of the search procedure. The efficiency is rela-

tively good, and this can be attributed primarily to the computation

of a new state transition matrix automatically in each search itera-

tion, so that the correct matrix is always available to be used in

computing a correction to the starting velocity.

In the cases tested,the specified time of flight has always

been large enough that the heliocentric transfer is elliptical with

an eccentricity of the osculating ellipse significantly less than

unity, and satisfactory convergence has been obtained. No tests have

been made with near-parabolic transfer conditions.

The initial guess for the starting point velocity is not highly

critical, except for a near 180 ° heliocentric transfer, because of the

extended range of convergence mentioned above. Ho_ever, if the ini-

tial guess is reasonably good, the search efficiency i_ further en-

hanced. A simplified, patched-conic procedure has been used success-

fully to generate first guess velocities, and this procedure is des-

cribed in Section 3.7. The program itself may be used to generate

conic orbits. The planet and Sun gravitational constants are inclu-

ded in the program input data; if any of these constants are set to

zero, the effects of the corresponding bodies are "switched off".

Operating Modes and Printout

The program has three operating modes to which the data printout

provisions are closely coupled.

2.1.6.1 Mode 1

Mode 1 is intended primarily for checkout purpose. A complete

data printout occurs at the beginning point and the end of every time

step (automatically included are the phase change points and the

endpoint) in a single integration. The program will not search in

8 -

The reverse integration should reach the starting point with a termi-

nal state that matches the original initial state for the first inte-

gration, if computational errors are negligible. The difference be-

tween the two states at the starting point indicates the computation-

al inaccuracy. This capability has been found to be most useful in

determining the effects of computational errors in the program.

2.1.4 Simplified Ephemeris Generation

The planet ephemerides are computed from osculating conics appro-

ximating the planet orbits. The elements of the osculating conics

are determined from the reference ephemerides entered as input d_ta.

These reference ephemerides are both the positions and velocities of

the five planets Venus, Eurth, Mars, Jupiter, and Saturn at reference

epochs chosen to give a good approximation to the planet orbits during

the flight. In the experience of this group the most convenient

source of these data has been the Jet Propulsion Laboratory Ephemeris

Tapes E9510, E9511, and E9512, covering the years 1950 to 2000(ref-

erence 4). A special program has been written to convert the ephem-

erides on these tapes, which are in heliocentric equatorial coordi-

nates of 1950.0, to heliocentric ecliptic coordinates of 1950.0 and

list the data in _ readable format. The reference ephemerides for

the trajectory to be computed are taken directly from the listings

and used as input data. Provision is made in the first operating

mode (Mode i) of the trajectory program to print the computed planet

ephemerides at each time step in the computation. These printed data

can be used to check the quality of the approximate ephemerides by

comparison with the listed ephemerides.

2.1.5 Trajectory Search Capability

The program has a trajectory search capability. Given a starting

position with respect to the initial body, a target point with respect

to a terminal body, a fixed time of flight for the transfer, and an

initial guess as to the starting velocity, the program will perform

an iterative search for a trajectory by updating the starting velocity.

A submatrix of the state transition matrix relates terminal point miss

to initial point velocity deviations, and this relation is used to

mechanize the iterative search. The search procedures are described

in detail in Section 3.7.

The search attempts to satisfy three terminal position con-

straints by varying only the three initial velocity components, which

-7 -

Mode i; only a single trajectory computation is performed but the
program does compute and print out the target point miss and the up-
dated starting velocity for the next search iteration. In other
words, the program cycles through a complete trajectory search itera-

tion once, and the printout provides a trace of all computations per-

formed.

The data printout at the end of each time step includes the fol-

lowing list of information (the Users' Manual, Reference i, describes

the record format):

Elapsed time from start

Primary body

True state vector

Encke conic state vector (see Section 3.1)

Encke variable state vector (see Section 3.1)

Disturbing acceleration defined in the Encke method

Gravitational gradient matrices

due to the primary body (see Section 3.2)

due to the perturbing bodies (see Section 3.2)

State transition matrix

Product of state transition matrix and its inverse and

the RMS Matrix, which are checks on transition

matrix computational accuracy (optional, controlled

by command in the input data; See Section 2.2.2.2)

Planet positions

At each phase change point two printouts occur. The first is a com-

plete printout as described above before the phase is changed, and

the second repeats the above list after the phase is changed, except

for the state transition matrix, the optional computational checks,

and the planet positions, none of which varies across the phase

:hange.

Mode 1 printout also includes a final record listing the results

of the search computations to update the starting velocity for a new

search iteration. The listed information in this final record in-

cludes the following:

Updated starting velocity

Matrix product NN -I to check the updating computations

(see Sections 3.2 and 3.7)

Position miss vector components and magnitude

_

2.1.6.2 Mode 2

Mode 2 of the program is the usual search mode. In this mode the

program automatically cycles through trajectory integrations, updating

the starting velocity after each iteration according to the search com-

putations described in Section 3.7. The input data include a maximum

number of search iterations and a tolerance on the allowable miss of

the target point. The search will terminate under program control

either when a miss is obtained which is within the tolerance specified,

or else when the maximum number of search iterations is reached.

Automatic printout in Mode 2 occurs only at the beginning point,

the phase change points, and the endpoint of the trajectory. Further-

more, a control parameter in the input data determines whether this

printout occurs in each search iteration or only in the final iteration.

The printed data in each record include all the information in the

first of the two lists above, except for the planet positions which _re

pzinted in Mode 1 only. In each iteration for which printout occurs,

a final record lists the position miss vector components and magnitude.

It is also worth noting that Mode 2 can operate with the input

data control determining the maximum number of search iterations set to

1 so that only one iteration occurs. This accomodates the cases in

which limited printout it required along an established trJjectory with-

out either a search or the voluminous printout of Mode i.

2.1.6.3 Mode 3

Mode 3 is also a search mode, differmg from Mode 2 only in that the

full state transition matrix i_ not computed. This mode is intended

primarly to be used in preliminary trajectory searches in which the

state transition matrix is of no use other than to mechanize the search

and fast computation time is desired for search efficiency. Only a

portion of the state transition matrix is required for the search com-

putations, and only that portion is computed in Mode 3. The printout

in Mode 3 is identical with Mode 2 except that the state transition ma-

trix and the associated error check matrices are not printed.

2.1.6.4 Special Printout Provision

In addition to the automatic printout for each of the three opera-

ting modes, provision has been made in the program to obtain printouts

at up to twenty specifiable time points along the trajectory. These

special printouts can be obtained in any of the operating modes. The

times of the special printouts are entered in the input data, and the

times must be entered chronoloqically from the startinq time of the

- t0-

trajectory cQmputation. The method which is used to compute the data

at the special times is as follows. At the beginning of each normal

time step in the program a test is made before the numerical integra-

tion commences to determine if the next required printout time lies

within that time step. If it does not, the integration proceeds nor-

mally; if it does, the following special computational procedure oc-

curs. The current time point in the integration becomes a point of

demarcation, and all necessary current data for that point are spe-

cially stored. Then a special time step is computed from the present

time to the required printout time, and a special integration step

takes place, generating the data required for printout. After the

printout occurs, the program restores the specially stored data at

the point of demarcation, and the normal integration proceeds from

that point with the next normal time step, and the printout time point

test recommences with the next required printout time.

This method is somewhat more costly than a method which would

simply inject an irregular time step at each printout point, and may

be more costly than an interpolation method. However, it has the

relative advantages that the overall integration is free of any noise

resulting from irregular tire steps and the printed data are free of

interpolation errors.

Osculatinq Conic Data Option

The program includes an option for computing and printing the

parameters and other data of the osculating conic approximating the

trajectory at each printout time point. A control parameter in the

input data determines whether or not the _SC_N subroutine is called

at each printout time. This subroutine computes and prints the fol-

lowing osculating conic data:

Conic type (ellipse, hyperbola).

Unit vectors locating the principal axes of osculating
conic.

Unit vectors locating the ascending line of nodes and the
transverse axis in the osculating orbit plane.

Unit vectors locating the R,S,Z coordinates (Reference 2).

Unit vectors locating the P,Q,Z coordinates (Reference 2).

Special anglesY and g Deference 2).

Longitude of the node, argument of the pericenter, and

the inclination angle of the osculating conic.

Semi-major axis, eccentricity, epoch of pericenter passage,

true anomaly, hyperbolic anomaly, and mean anomaly

(for a hyperbola).

ii -

Semi-major axis, eccentricity, epoch of pericenter passage,

true anomaly, eccentric anomaly, and mean anomaly
(for an ellipse).

It should be noted that the osculating conic described by these data

is not the osculating conic used in the Encke integration method as

described in 3.1. The latter conic is distinguished in the program

terminology as the "Encke conic".

2.2 Computational Accuracy

Error Sources

Special measures have been necessary to limit computational in-

accuracies to tolerable levels, especially in the single-precision ve_

sion of the program. There are three categories of computational

errors present in the program which are particularly sensitive in the

single-precision computation. These are listed below and discussed

in turn in the following paragraphs:

I. Truncation errors in the numerical integration and roundoff

errors due to the limited precision (8 decimal figures in the

IBM 7094) in normal computations.

2. Errors due to loss of precision at the phase change points

and the rectification points in the Encke method.

3. Propagation of errors resulting from imprecision in the Kep-

ler problem computations in the generation of the Encke conic

state vector in the Encke method.

Double-precision computation, of course, greatly attenuates these

error sources, with, however, an associated penalty in computer oper-

ating time.

2.2,1,! Truncation and Roundoff Errors

Truncation errors in the numerical integration are kept small by

use of a numerical integration method with a high order of accuracy

and by proper choice of the time step for that method. The fourth-

order Nystr_m method is used (Section 3.3); higher order Nystr_m me-

thods are available, but the fourth-order method is sufficiently

accurate. The time step computation is explained in detail in Section

3.5, with a derivation in Appendix B, and one basis of this computa =

tion is that the truncation error be less than the precision level,

that is, less than 1 part in 108 for single-precision computation.

Truncation error is not the only determining factor in the time

step computation. Roundoff errors which are due to the limited pre-

-IZ -

cision in the computations, tend to grow rapidly larger as the number

of time steps is increased. So, there is in general, a tradeoff be-

tween truncation errors and roundoff errors in the time step computa-

tion. The time step formula contains a scaling constant, and there is

a value of this scaling constant for which the total error from these

two sources is minimized. This optimum value is furthermore trajec-

tory-dependent, and should be redetermined in each case. The values

given in Section 3.5 have been found to be a good first guess, gener-

ally.

2.2.1,2 Loss of Precision at Phase Chanqes and Encke Conic

Rectifications

The errors which result from loss of precision at the phase change

points and the rectification points in the Encke method(technically,

roundoff errors) are unfortunate and, generally, irreducable conse-

quences of single-precision computation. To illustrate the nature of

this error source, consider a trajectory leaving Earth, going, say,

to Mars. At the first phase change point from geocentric to helio-

centric coordinates the distance from earth is of the order of 106km,

and the distance of the earth from the Sun is of the order of 108km.

Therefore, in the phase change computations in the computer, numbers

of the following formats must be added:

.XXXXXXXX E 07 distance of point from Earth

.YYYYYYYY E 09 distance of Earth from Sun

When these two are added, the least significant two digits of the first

are lost. In the present example this is a position error of between

0 and i0 km. A similar error, but of quite different magnitude, is

made also in each velocity component. _hen these errors are propagated

forward to the target point, they result in a miss. The position and

velocity errors resulting from the phase change are not independent.

Furthermore, in this example there is dt least one more phase change

at the Martian sphere of influence. Consequently, a general relation

wh_hpredicts the target miss due to these error sources is not easily

derived.

At each rectification point in the Encke method (see Section 3.1)

errors of precisely the same nature occur. _en rectification occurs,

the numerically integrated deviation is two orders of magnitude small-

er than the total state vector, so a loss of precision occurs in the

rectification and a miss results. On a trajectory such as the one in

the example above, typically four rectifications occur, one at each of

-13-

the phase change points (required by the change of primary body and
conic type), one in the midcourse phase,and one in the Mars approach
phase.

Double-precision computation is the only effective method of re-

ducing errors from these sources.

2.2.1.3 Errors in the Hyperbolic Encke Conic Computation

This error source was most troublesome in the development of this

program, and a special formuldtion of Kepler's problem was necessary

to reduce errors of this type to tolerable levels. Section 3.4 and

Appendix A describe the nature and consequences of this error source

and the special formulation devised to control the errors. Very brief-

ly, the equations of standard formulations of the Kepler problem are

critically sensitive to computational precision errors in the Kepler

iteration variable for the hyperbolic phases of trajectories in the

vicinity of planets. These errors propagate exponentially in the

hyperbolic equations and result both in large misses and in frequent

failures of the Kepler iteration variable to converge to within an

acceptable tolerance. It was found that it was not possible to com-

pute the conic state to single-precision accuracy with any of the nor-

mal conic formulations tested (two varieties of the standard conic for-

mulation and the Battin universal formulation). It has been found

possible to obtain this accuracy with single-precision computation

using the new formulation, and this is regarded as an accomplishment

which may be of significant importance in other Encke method programs.

2.2.2 Computational Accuracy Checks

The program provides three means of checking computational accu-

racy: (i) the search noise level, (2) accuracy checks on the state

transition matrix computation, and (3) the "closed loop" accuracy chec_

These are discussed in turn below.

2.2.2.1 Search Noise Level

The search noise level is determined after a representative nomi-

nal trajectory has been computed by setting the target miss tolerance

in the input data to zero and allowing the program to cycle through a

sufficient number (usually 6 to 12) of search iterations. It is

understood that the nominal trajectory is within the noise band: that

is, there is no bias in the miss to be removed by further searching

when the noise level determination is made.

14-

The search noise level is an indication of random computational

errors. There are possible systematic errors in the single-precision

computations, p_rticularly for very small perturbations about the nomi-

nal trajectory, and these are not revealed in the search noise level.

In the cases tested thus far, the target miss noise level reflects an

uncertainty in the initial velocity of less than 1 part in 107(single -

precision),if the time step scaling factor is properly chosen. That

is, if one of the initial velocity components for the nominal trajec-

tory is changed by 1 part in 107 , the resulting miss will be well above

the noise level, unless the time step scaling factor is not properly

chosen. This serves, then, as one means of determining a proper time

step scaling constant; the value is optimum when the noise level is

minimum.

2.2.2.2 State Transition Matrix Accuracy Checks

There are two accuracy checks on the state transition matrix com-

putations, which are optional depending upon a control constant in the

input data. The first is the comDuted product of the state transitimn

matrix C and its inverse C -I, and the second is an "RIMS" matrix to be

described below. The product matrix CC -I should be the (6x6) identity

matrix, but, because of roundoff errors in the matrix multiplication,

very large errors result in the product matrix. Consequently, this

first accuracy check alone has limited usefulness; the accuracy of

the state transition matrix cannot be easily inferred from the product

matrix. The RMS matrix, however, can be used in conjunction with the
-I

CC matrix to infer an order of magnitude of the state transition

matrix term errors. The paragraphs below give a very brief descrip-

tion of this method, and Figure 2-1 depicts a state transition matrix

and its associated product and RMS matrices used to illustrate the

discussion. Appendix C gives a detailed derivation of the effects of

errors in the CC -I and RMS matrices.

The state transition matrix C may be partitioned into four (3x3)

submatrices:

c = (2.1)
S

Then, since C is simpletic, the inverse is obtained simply by rear-

rangement of terms:

_N T

C = (2.2)

S T M

15-

000000 000000
|1 l!

_0_0_ O0_mO

Ill II I

000000 000000
I I I

o e o e o io o io ° le _ oII

000000

III_

00_0_

00_

II !

000000

lllIll

0__

oee|eoeI

000000 000000 00000_
II II IIII;I

letOeeee lejeooee eee'eooI I II t

000000 000_0 000000
l IIIII

_ _ _ _ I. l_2_ _ _ _ _ _ _

___0 0_0_0

iooele_eoeeee oeoeeO

III _I II I II
Z

I I I Z I I I I I I I I I I I

__ _0_ 0 __

ellleoZoelell loooo_

III _ II II

_000000_00000_ 000000
III II II III II

_|ooeeoo_eeeooo_eoeoe_lII_ I I_ I

(J

o

o'

+li
.4,al

,...q

&

-i

The CC product matrix is obtained by straightforward multiplicdtion:

CC -I =r (MTT - NsT) (-MNT + NMT)]

L(ST T TS T) (-SN T + TM T) J (2.3)

The computations in the program follow this pattern precisely, and

from Equation (2.3) two observations can be made immediately:

i. The diagonal elements of the upper right and lower left(3x3)

submatrices of CC -I should be identically zero regardless of the

errors in the terms of C. This is because the six multiplied

terms in the computation of each of these particular diagondl

elements consist of three pairs of identically equal and opposite

terms. The non-zero diagonal terms in these two submatrices

then result totallv from roundoff errors in the multiplications

and additions involved in the computations. Reference to Figure

2-1 shows that these errors can be very large in the upper right

(3X3) submatrix especially.

2. The upper left (3x3) submatrix should be the identical trans-

pose of the lower right (3x3) submatrix regardless of the errors

in the terms of C. If the transpose property is not identically

true (as is the case in Figure 2-1), the reason is that the

roundoff errors in the computation of corresponding terms sum

together in different orders in the two computations. It is also

true that in these two submatrices the term value differences

from 1 (diagonal terms) or 0 (off-diagonal terms) are due to

both roundoff errors in the matrix product computations and in-

accuracies in the state transition matrix.

Since some of the terms in the CC -I matrix result from matrix

product roundoff errors only and some from both roundoff errors and

transition matrix term errors, it is possible to ascertain the order

of magnitude of the roundoff errors only, the order of magnitude of

the combination errors, and then from a comparison infer a limit for

the order of magnitude of the transition matrix errors. The RMS ma-

trix is intended to facilitate this operation. The method of forming

the RMS matrix is as follows. Consider the ijth element of cc-l:

6

= k_ (C)ik (c-l)kj (2.4)(CC-I)ij =i

-17-

The ijth element of RMS is (CC-1)ij divided by the square root of the sum of the

squares of the six terms in the computation of (CC-1)ij:

(cc-l)ij
= , (z.5)

C)ik (C-l)k

-I

An analysis of the propagation of both roundoff errs and state transition
-I

matrix inaccuracies in the co_-nputed CC and RMS matrices is given in AppendixC.

There are two assun_ptions made in the course of analysis which lead to a simpli-

fied result:

I. The relative roundoff errors in all multiplications are independent and
Z

unbiased and have the same distribution with a common variance 0-tel.

(Relative error is the absolute term error divided by the term value.)

Z. The relative state transition matrix term errors are also independent
2

and unbiased and have a common distribution with a variance _t

It is shown in Appendix C with the aid of these assumptions that the order of magni-

2 of the relative roundoff errors can be determined from
rude of the variance 0-reI

z z (z.6)
°'rel _ °-(RMS) ij

where i and j denote the diagonal terms of the upper right and lower left (3x3) sub-

matrices of RMS. That is, ij has the following permissable values

ij = 14, 25, 36, 41, 52, 63

2
is the variance of the (RMS) i j term, and can be estimated from the printed

°'(RMS) ij

data. The order of magnitude of the variance of the relative state transition matrix

term errors can be obtained from

Z Z 2

O-reI + Z o-t _ O-(RMS)k I
(z.7)

where kl has any value other than the six values of ij above.

18-

The procedurefor usingthe error checksis as follows:
1. Determine the order of magnitudeof the varianceof the relative round-

off errors from thediagonalelementsof the upperright andlower left {3x3) sub-
matrices of the RMSmatrix, usingEquation(2.6}.

Z. Next, determine the order of magnitudeof the variancesfrom other ele-
ments of the RMSmatrix usingEquation(2.7).

3. Compare the results of steps 1 and 2. If the order of magnitude in step

2 is about the same as in step 1, the relative state transition matrix term errors

are no larger than the relative roundoff errors. If the result of step 2 is signifi-

cantly larger than step l, then the relative state transition matrix term errors are
2

significant and the order of magnitude of the variance 0-t can be determined from

Equation (7_. 7)

Consider Figure 2-1 again for an illustration. In applying step 1 we use all

six of the special elements of RMS to obtain an estimate of 2
_rel :

2 1 {RMS) 2 25 2_rel _ -6 14 + {RMS}z_ + {RMS}36

Z
+ (RMS)421 ÷ (RMS) 5_ + {RMS}63

.38 x 10 -16

In applying step 2 we do not use the main diagonal elements of RMS, because they

are nonuniformly biased. We arbitrarily choose the six off-diagonal elements of

the upper left (3x3) submatrix:

2 Z 1
_rel + 2°'t _ -6 (RMS}(2 +

+ {RMS) Z +

2 + (RMS) 221(RMS} 1 3

(RMS) 3_ + (RMS)3_

1. 14 x 10 "12

We conclude, then, that the relative term errors are much larger than the relative

roundoff errors, and
-6

_t "" .5x 10

2. 2. 2.3 Closed-loop Accuracy Check

The "closed" loop accuracy check evaluates the effects of both random and

systematic errors in the trajectory integration. It is a most powerfuloverallaccur-

acy determination. The mechanization of the closed loop accuracy check has been

explained earlier in Section 2.1.3. The closure miss in this check is the net result

of the contributions from all error sources, and the individual contributions are not

separable, in general. This powerful technique has potentialapplicability to other

trajectory computation programs for different purposes.
2.2.3 Typical Accuracy Data

Table 2-I displays some typical data from single-precision pro-

gram accuracy tests. The closure miss data are the results of closed-

loop accuracy checks for the different trajectories, and the search

19-

noise level in each case is for a trajectory search in the forward di-
rection. Comparisonof the first two examples indicates the error
contribution of a phase change, and the last example shows the im-

provement obtained by optimizing the time step scaling factor. Ex-

ample 3 shows typical accuracy of the program for a full interplane-

tary trajectory with all error sources contributing in full measure

to the results.

TABLE 2-1

PROGRAM ACCURACY DATA

(Single Precision Computations)

RMS Search

Trajectory Noise Level Miss

Closure

i. Point just inside Mar-

tian sphere of influence

to a target point 5000 km

above planet surface (tra-

jectory search and closed-

loop check).

2. Point on same trajec-

tory just outside Martian

sphere of influence to

same target point (search

and closed-loop check).

3. Earth-Mars 258 day trans-

fer, target point 5000 km a-

bove planet surface (search
and closed-loop check)

0.2km 5.4km

3 105

65 5466

4. Midcourse point 120 days

from Earth to same target point

at Mars for the above 258

day trajectory (search and
closed-loop check for dif-

ferent time step scaling factors)

SF = .O5O

SF = .I00

10.3 1084

14.0 269

Z0-

CHAPTERIII

COMPUTATIONMETHODSANDTECHNIQUES

The computation methods and techniques used in the program will

be discussed in some detail in this section. The discussion will

point out some acute problems associated with various techniques that

have been attempted.

3.1 State [nter_ra_ion Method

Reference 3 describes the Encke method as it is used in this

program. The fundamental vector equation of motion is

2 n ()__dr + pri -- - + % =
dt 2 r3 r__ d_ -- _dk=l rk3

(3.1)

where: _ is the true position of the spacecraft with respect to

the primary body.

Upri = GMpr i is the product of the universal gravitational constant

and the mass of the primary body (the spacecraft mass

is neglected with respect to the masses of the planets).

The summation is over all bodies other than the primary

body.

_k is the product of universal gravitational constant and

the mass of the kth body.

is the spacecraft position with respect to the kth body.

_k is the position of the kth body with respect to the

primary body.

The primary body is defined to be the one which exerts the largest

gravitational force on the spacecraft at any point on the trajectory:

that is, the spacecraft flies primarily under the gravitational in-

fluence of the primary body, an_ the gravitational attractions of the

remaining bodies constitute a disturbing force which causes the tra-

- Z! -

jectory to be Derturbed from a simple two-body trajectory. The primary

body chan@es durlng the course of the trajectory, and the "phase" of

the trajectory is identified by the primary body. For example, in the

injection phase the primary body is the launch planet; in the mid-

course phase it is the Sun; and in the terminal phase it is the t_r-

get pl_net. The method of phase determination and changing in the

program is discussed in Section 3.6.

In the Encke method at a time t o (known as a rectification time)

the true position and velocity vectors [(t 0) _nd _(t0) define an oscu-

lating conic orbit. In the program terminology this is called the

Encke conic to differentiate it from an osculating conic which the pro-

gram can compute at any time point if an input control command is

given. The Encke conic is the solution to the homogeneous portion of

Equation (3.1):

d2r _ (3 2)
-enc Dri r = 0

+ 3 --enc
dt 2 r

enc

The Encke conic computation is done in the ENC_N subroutine. At a

time t the true velocity and position are the sum of the Encke conic

velocity and position and the increments caused by the disturbing

forces:

r(t) = r (t) + 6(t)

z(t) = v (t) + _(t)
--enc

The differential equation of 6(t) is derived from (3.1) using (3.2)

and (3.3):

d26 U

dt z = r3enc

(3.3)

(3.4)

This is the basic trajectory equation integrated numerically in the

INTEG subroutine. Both terms on the right side of (3.4) are computed

in the GRAVF_ subroutine. Both subroutines perform additional compu-

- ZZ-

tations for the state transition matrix integration, _s described be-

low,

3.2 State Transition M_trix Inteqration Method

The derivation of the state transition matrix and its applications

to simplified interplanetary guidance are described in detail in re-

ference 2. The matrix relates the propag,Jtion of small perturbations

in the state vector along _ reference trajectory according to the

equation:

6x. = C..6x. (3,5)
-3]z -%

where

r(t)]
x(t) = -- is on the state vector at time t

v(t) on'a reference trajectory

[6r (ti)]
6x is the state error at t.

--i l

6 v (ti)

6x. is the state error at t.
-3 3

C.. is a (6x6) matrix relating 6x. to 6x.
31 --3 --I

If the state errors are small, the linearized state transition matrix

is

C , ,

3 z
(3.6)

Cji is partitioned into four (3x3) submatrices in the following manner

Cji -- LSji jij

(3.7)

and it is further shown in Reference 2 that Cji obeys the following

differential equation:

Z3 -

dC , ,

___l!
dt,

]

d.,. it'S
dt, dt ,

]]

dS.. dT..

dt. dt.
]]

S .. Tji
ix

GjMji GjNji

(3.8)

where the (3x3) matrix G, is the qravitational qradient matrix de-
]

fined by the position variation_l equation

6_(tj) = Gj6[(tj) (3.9)

Note that t. is fixed and t. varies, and c..is ._ function of both t.
z 3]z z

_nd t.. G is recognized to consist of two parts, the gr_vit_tion_:l
3

gr idient of the primary body. denoted by Gpr i, _nd the result._nt gr _-

vit tion.l gradient of the disturbing bodies, denoted by Gpert. Then

. : G + tj)G 3 pri (tj) Gpert (
(3 i0)

where

u

Gpri(tj) = Dri 5
r(tj)

3r(tj)r(tj)T - r(tj) Tr(tj) I3]
(3 ii)

I is the (3x3) identity matrix
3

n

Gpert(t]) = _ Uk [
k=l dk(tj)5 3_(tj)_(tj)

T _ _(tj)T_(tj)i I (3 12)

where the summation extends over all disturbing bodies and _ is the

spacecraft position with respect _ the kth body.

Equation (3.8) is the basic matrix differential equation which is

integrated in the INTEG subroutine. The G matrix is computed in the

GRAVF_ subroutine. The initial condition from which the integration

begins is

Ci i = i6 , the(6x6) identi£y matrix (3.13)

Z4-

3____3Numerical Integration Techni_Tue

Nystr_m's method of numeric_l integration is used in the program.

This technique is described in Reference 5 It is a one-step inte-

gration method which _pplies to second order differential equations

of the special form

dZx = f(X) (3.14)

dt 2

where X may be a scalar, vector, or matrix. The st,te equation (3.4)

is clearly of this form, _nd the state transition mntrix equation

(3.8) can be easily converted to the same form ,_s follows. Define

(3.15)

where

Aji = [Mji Nji] (3x6)

Bji = [_ji Tji] (3x6)

When these are substituted into (3.8), the result is

Therefore

dC ° .

dt.
3

P

dA,.

dt.
3

dS..

dt.
3

d2A ..

= G.A..
2 3 31

dt.
3

(3.16)

Equation (3.16) is of'the form (3.14).

The Nystr_m integration equations are given below for the general

form (3.14). Let

Y -- d__XX
dt

In the integration of the state equation (3,4) X corresponds to 6__and

Y corresponds to u__. In the integration of the state transition matrix

ZS-

equation (3.8) or (3.16) X corresponds to A.. and Y corresponds to
31

Bji. In this terminology the Nystr_m equations are expressed as fol-

lows:

Xn+ 1 = X n + h#(Xn,Yn,h)

Yn+l = Y + h% ,h)n (Xn'Yn

(3.17)

where

%(Xn,Y n h) Yn +, = (k I + 2k 2) (3z8)

1

9 (Xn,Yn,h) = _(k I + 4k 2 + k3) (3.19)

k I = f (X n)

O

k2 = f(Xn + h_ Yn + h_l)

b 2

k 3 = f(X n + hY n + _kj)

(3.20)

(3.21)

(3.22)

h = tn+ 1 - t n is the time step increment

The integrations of both (3,4) and (3.16) _re performed in the

INTEG subroutine. The forcing function equ,tions (3 20), (3.21), _nd

(3.22) are evaluated with the use of three other subroutines+ however.

The right side of Ecu_tion (3.4) (the perturbing acceleretion acting on

the spacecraft) and the gr;_vit;_tional gr_dient matrix G in equltion

(3.16) ere computed in the GRAVF_ subroutine. The Encke conic posi-

tion _nd velocity vectors required for these computations _re gen-

erated in the ENC_N subroutine, and the plonet positions :_re computed

in the EPHEM subroutine. These computations take pl_ce, of course,

once during each time step in the integration. %_en kl,k2, and k 3

have been computed then Equations (3.17) are evaluated using (3.18)

and (3.19).

The Nystr_m technique is self-starting and achieves i high order

of _ccur cy with comput_tion_l simplicity The formul_tion used in

the program yields results with truncation errors proportion 1 to

h4: higher precision Nystr_m formul:_tions ;_re _veil _ble(Reference 5),

3 4 Conic Computation Method

The most difficult problem experienced in the preparation of this

- Z6-

program has been the accurate computation of the conic position and

velocity _nc and v used in the Encke integration method This re---enc "

sult may perhaps be surprising, since computation of conic orbits is

generally considered to be straightforward. However, the conic equa-

tions are critically sensitive to computational imprecision in the

case of a hyperbolic orbit in the vicinity of a planet. The conic e-

quations are not so sensitive in the case of an elliptical orbit, and

any of the usual formulations of Kepler's problem for an elliptical

orbit can yield acceptable computational accuracy. Bdttin's universal

formulation (Reference 3) _iso exhibits the critical sensitivity to

computational imprecision in the case of hyperbolic orbits. Both the

Battin formulation and the standard conic formulation were tried un-

successfully in the program.

There are two deleterious effects of computational imprecision in

the conic equations for hyperbolic orbits: (i) the iterative solution

of Kepler's equation fails to converge to within an acceptable toler-

ance, and (2) the error in the iteration variable propagates exponen-

tially in the computation of [enc and v . These effects result in--enc

intolerable errors in single-precision trajectory computation. A new

formulation of the hyperbolic conic equations has been devised to a-

chieve high precision computation. This new formulation consists of

both an advantageous change of variable in Kepler's equation and a

careful grouping of terms in the equations to maximize computational

precision. The new formulation has completely overcome the convergence

failure in Kepler's equation and has achieved a very significant im-

provement in the propagation of errors in the iteration variable.

The discussion below will describe the precision problem for the

standard hyperbolic formulation. The same argument applies generally

to the Battin universal formulation. The new formulation will be de-

scribed, and error propagations in the two formulations will then be

compared.

The computation of r and v is, of course, Kepler's problem:
--enc --enc

given _0 and _0 at _ time t O with respect to a primary gravitdting

body, determine the parameters of the conic orbit and compute the posi-

tion and velocity _nc(t) dnd --encV (t) at a later time t. Figure 3.1

illustrates the problem for a hyperbolic orbit. The Kepler equation

for this case has the form

= -_----- cosh AH - + 1 + _-- sinh AH (3.23)

- Z7 -

V o

Figure 3.1 Kepler's problem for hyperbolic orbit

where

u is the gravitational constant of the primary body

a is the semimajor axis of the hyperbolic orbit (positive)

_t = t-t 0 is the known time increment

AH = H-H 0 is the incremental change of the hyperbolic _nom_ly

r 0 = magnitude _0 i

AH is determined by an iterative solution of this equation, and then

r (t) and v (t) are determined from
--enc --enc

r
--enc -- 1 r0(Cosh AH - 1 [O + u _0 " _0 (cosh AH-I)

+ r0_ sinh AH] XO
(3.24)

V _---

--_nc sinh AH _0 + 1 r

As a trajectory approaches a planet, _0 and _0 are first defined

at the planet sphere of influence, and the scalar product _0._0 is a

large negative number. For the case of a close pass of the planet,

the semimajor axis a will be of the order of a planet radius. Typical

values of r 0 at the sphere of influence are more than i00 planet radii.

Hence the coefficient (I + r0) in (3.23) is of the order of I00. The
a

coerr_cient ua is of the same order of magnitude since

(3.26)

where e is the eccentricity of the hyperbola with typical values of

about 2. Consequently, when AH is of a reasonable size, the last two

terms of (3.23) are large, of the same order of magnitude, and opposi_

in sign, and single precision computation results in both appreciable

errors in AH and nonconvergence in the iteration.

On the IBM 7094, which is limited to 8 decimal digit single pre-

cision numbers, the tightest usable tolerance in a ratio test in the

AH iteration is about 1 x 10 -7. Our experience has been that a Newton

iteration for AH failed to converge for values of AH larger than about

2 for a case with the typical numbers mentioned above.

- Z9 -

The convergence problem is not experienced on the outbound portion

of the hyperbola because both of the large terms in (3.23) are posi-

tive. This formulation does, however, suffer the other unfortunate

disadvantage that an error in AH propagates exponentially in r (t)
--enc

and v (t). Differentiating (3.24) and (3.25) with respect to AH
--enc

shows this property:

_r_enc = -[_0 sinhA_ F,(bH)_o _[a][O.XOsinhAH + r coshAH 6(AH)_0

(3.27)

nc-- - rr 0 oshAH 6(AH) 0 - _inhAH6(AH)_Or r d(AH) _enc-

(3.28)

All coefficients in these equations contain exponential multipliers

which rapidly increase the magnitudes of the errors as the transfer

lengthens.

The new formulation overcomes the iteration convergence problem

and achieves a very significant improvement in error propagation. The

formulation is derived by a change of variables. Define a new vari-

able x by the relation

AH
e = 1 + x (_H >0) (3.29)

Kepler's equation can be put into the following two forms by substitu-

tion of (3.29) into (3.23) and algebraic rearrangement of terms:

K-_I x2 + K x - t - (l+x) log(l+x) = 0 (x _ 0.3) (3.30)
2 z m

(KI- I)
2 + x3L(x) = 0 (x < 0.3) (3 31)

2 x + (K 2- l)x - t m

- 30 -

where

1) (r0._v0 > 0)
(3.32)

1 +

_0 "XO r0v0

I

(_r0._v0 < 0) (3.33)

2
r0v 0

K2 - U 1 - tm (3.34)

t m = _ _t (3.35)

2
v0 2

i - (3.36)
a _ r0

L(x) - 1 {x 2 }
3 ' -- + x- (l+x) log(l+x) (3.37)

x 2

_. (-1) n x P
= (n+2) (n+3)

n=0

A detailed derivation of these eauations is given in Appendix A.

Equation (3.31) is used for very short transfers (x < 0.3 corre-

sponds approximately to _H < 0.25), and (3.30) is used for all but

very short transfers. The terms in these two equations have been

especially grouped to maximize computational precision. The constant

K 1 in (3.30) must be computed precisely, since it has a predominant

effect for large transfers. Consequently, the alternative forms in

equations (3.32) and (3.33) are used. The L(x) function in Equation

(3.31) is evaluated by the power series expansion (3.37), the series

being truncated when the sum in the computer is unchanged by the addi-

tion of the next term i.e., when compatational precision is exceeded.

The conic state equations are derived by substituting (3.29) into

(3.24) and (3.25) with the results (see Appendix A) :

-31 -

r--enc
(t) = [l

a x 2 a x 2

2r 0 _ r0 _'_0 _ r0VU (l+x)

nc - rr 0 l+x [0 + 1 a2r ZO

(3.38)

(3.39)

The effect of an error in x is 2

_ [a _0' 2x+x2
&_nc 2r 0 (l+x)2 6x _ + _ _0 (l+x)2 + r (l+x) z

]_x XO

(3.40

2

6_enc = - rro (l+x)2 6x [0 a2r 2x+x2(l+x)2_x _0 rl dxdr 6x(v__o)_ (3.41)

A comparison of (3.27) and (3.28) with (3.40) and (3.41) verifies that

the latter equations show an improvement in the propagation of errors

in the iteration variables. The errors 5(_H) and _x are random vari-

ables and may be considered to be uniformly distributed within the

range of the iteration tolerance, i.e.,

0 < 6(AH) < 1 x 10 -7
-- _H --

0 < 6__xx < 1 x 10 -7
-- X --

(uniformly distributed[

(3.42)

(uniformly distributed)

In Appendix A it is shown thdtthe improvement in the error propagation

is in the ratio of

(e)AH AH (3.43)
e - 1

For a transfer from the sphere of influence to a peripoint near a pla-

net 6H can be of the order of i0. The ratio (3.43) shows that the

expected improvement in accuracy is the same order of magnitude.

The new formulation Equations (3.30) through (3.39) are used in

the program for the case &t (or &H) >0. In the case &t < 0 the variable x

defined _ Lq. (3. Z9) ranges only in the hlterval (i,0) for all negative _t (or_H),

and precision would be lost in using that form. An obvious alternative is to define

3Z-

-AH1 + x = e for At < 0

and rederive the above equations. However, it turns out to be simpler
and just as accurate to reverse the sign of XO and At, compute a nega-

tive z(t) using the above equations, and then reverse its sign to ob-

tain the final desired value. This is the method used in the program.

3.5 Time Step Computation Method

The time step is computed in the program from the formula

(GjGjT _ 1hi+ 1 = K tr - (3.44)

where hj+ 1 = tj+ 1 - tj is the time step between the jth and (j+l)th

points

Gj is the gravity gradient matrix at the jth point

K is the scaling constant set by an input data card (a

typical value is about 0.i in the single-precision ver-

sion).

This formula is derived by an argument based on the state transition

matrix integration. This computation is very sensitive to numerical

inaccuracies, and it turns out that a time step which is chosen for

sufficient accuracy in the state transition matrix integration will

also give satisfactory accuracy in the state integration by the Encke

method. The method of derivation is explained in Appendix B. There

is a further useful relation for computing the trace in (3.44) which

should be pointed out here. Let gmn be the (m,n)th element of G

O=[gmn]
Then the trace is computed by

3 3

tr(GGT) = m___ ____ gmn 2 (3.45)

Since G varies approximately as i/r 3, where r is the distance of

the spacecraft from the primary body, the time step varies approximate-
3/2

ly as r .

In planet-centered hyperbolic phases two special problems must

- 33-

be considered. Firstly, it is found that the magnitudes of the G ma-
trix elements vary considerably over a time step, so that an"average"

value of G must be used for each time step in order to make the time

step lengths consistent inlx)und and outbound. This is done in the pro-

gram by a linear differential correction to the value given by (3.44).

Secondly, the computed time steps can be very large in the region near

the asymptotes of a hyperbolic trajectory. Since the phase test is

made in the program at the end of each time step, the phase change fram

planet to sun-centered coordinates can be unnecessarily delayed un-

less a limit is placed on the allowable time step magnitude. A limit

of one day in hyperbolic phases is used in the program.

In the double-precision version of the program the time step is

computed in the same manner, except that the scale factor K is reduced.

A typical value of K is about .01 in the double-precision version.

3.6 Trajectory Phase Determination Method

The trajectory phase designates which of the solar system bodies

is the primary body. The phase determination is based on the gravita-

tional gradient matrix G defined in (3.10) through (3.12). The start-

ing phase in a trajectory is always known from the specification of

the starting planet (or the Sun) in the input data. Thereafter, a

phase test is Made at the end of each time step in the integration.

GTpr i) GTThe test consists of comparing tr(Gpr i with tr(Gpert pert),

are the two components of G defined in (3.11) and
where Gpriand Gpert

(3.12). As long as

G T
tr(GpriGTpri) > tr(Gpert pert)

the current phase remains unchanged. When the relation above does not

hold, a phase change occurs.

The phase change procedure is as follows. If the old primary

body were a planet, the new primary body is the Sun. If, on the other

h _nd, the old primary body were the Sun, then the nearest planet to

the spacecraft is selected to be the new primary body. The planets are

never near enough together so that an ambiguity can occur in this se-

lection procedure. The coordinate system origin is changed from the

old to the new primary body, and this, of course, requires appropriate

combination of spacecraft and primary body position and velocity vec-

tors. However, since no coordinate rotation is done, no change in the

state transition matrix occurs at phase change points.

34-

3.7 Trajectory Search Method

The program will perform an iterative search for a tra3ectory be-

tween a starting point and an endpoint with a fixed time of flight.

The search works for either forward or backward integration. The sub-

matrix N of the state transition matrix in _quation (3.7) relates end-

point position deviations to beginning point velocity variations, and

the N matrix is used to implement the search procedure.

The first search iteration begins at the fixed starting point

with an initial guess for the starting velocity, and a trajectory is

computed toward the target point. The trajectory terminates when the

fixed time o6 flight is reached, and the position miss vector _r is
-m

computed:

Ar m = _(tf) - _targ (3.46)

where [(tf) is the computed trajectory endpoint at the time of

flighttf.

_targ is the intended target point.

Equation (3.7), where i denotes the starting point and j is now the

endpoint f, gives a linear approximation to the deviation in initial

velocity which causes the miss Ar :
-_n

A_ = Nfi -iAr_m (3.47)

Therefore, in order to null the miss, a new starting velocity is com-

puted for the next trajectory iteration by simply subtracting A_/ from

the initial starting velocity. This same procedure continues for sub-

sequent i_erations, and the general relation for the starting velocity

for the (n + l)th iteration in terms of the miss computed on the nth

iteration is

v. = v. - N -I _r (3.48)

--Zn+ 1 -'I n fi n -m n

Note that since a new state transition matrix is computed in each

iteration, the correct Nfi is available at the end of each iteration
n

automatically. The search terminates when the magnitude of the miss

vector becomes less than (or equal to) a specifiable tolerance which

-35-

is set by an input data card.

The search computations are linear, yet the search is relatively

efficient because the state transition matrix is updated in each itera-

tion. The linear search works quite well when the miss is so large J

that the endpoint is outside the sphere of influence of the target

planet. In that case the target point becomes referenced to the Sun,

rather than the planet, and the non-linear planet influences are not

strong. However, inside the sphere of influence of the target planet

the problem becomes highly non-linear if the target point is near the

planet because the miss vector _m may be as large as, or even larger

than, the endpoint position vector in the planet-referenced coordi-

nates.

In most cases tested thus far even in the most non-linear region

the linear search computations reduce the miss by at least a f_ctor of

two with each iteration. These tests also indicate good convergence

_hen the initial guess trajectory misses the target planet by as much

as one-half the radial distance of the planet from the Sun. Table 3-1

shows some typical results of trajectory searches which have been per-

formed.

Nonconvergence of the search is experienced often in orbits in

which the heliocentric transfer angle is near 180 degrees. The reason

is the singularity in the computation of the out-of-plane velocity

correction; the linear search computations break down as the transfer

angle nears 180 degrees unless the first guess for the out-of-plane

initial velocity component is very good. When such a case occurs, it

is necessary to vary the out-of-plane initial velocity component manu-

ally until a value is found for which the search converges. The 258

day Mars transfer listed in Table 3-1 has a heliocentric transfer an-

gle of approximately 178 degrees, and illustrates thJt the search can

be done successfully by this method.

Since the search converges well for large initial misses, the

determination of an initial guess for a starting velocity is not high-

ly critical. However, the better the initial guess, the more efficient

the search will be, clearly. The following simple patched-conic pro-

cedure has been successfully used to obtain an initial starting velo-

city:

i. Find a heliocentric elliptical transfer between the target

position on the arrival date and the initial position on the

starting date. If these two positions are near planets, use the

planet positions for the first guess.

-36-

A

0}..I

'0°,"I

U
Q)

I
aJ

D_

v_
4J

v)

.c
(J

r.n

0
4-_

..,-'1

E-,

I

,-4

r_
[-,

.,_4OI(L

C

0 u

o

ul

,....4

.,-.i

u,3

o

N

_D

o u
0 o ,_
•_ o

u_
,.c:

0

0o h 0

(_i 4J r_

o

u"l

cr_

}..i

0 - _n
• • c_

}..i MI o • -,-I

(M 0 h

4a -,4 c'_ --

n_ ,-4 I_ _' ",_ IE _'
"D _ h 0 _ 0 0

-,'4 E_ r_ _ _ r_

("3
c'-xi

0
,-4

X

u_ C_
.,-I

r, O

4a
O • ¢_

.IJ _ >
O

[.z.1 ° r3
1.4

n_ _ _ U
"D In rD

I:: O 4_

,-4 _ I_ u_

-3? -

2. Compute the elliptical velocity at the initial point. If the

initial point is outside the sphere of influence of a planet, this

is the initial guess velocity. Otherwise a further computation

is necessary.

3. Refer this elliptical velocity to the starting planet by sim-

ply subtracting the planet's velocity from the elliptical velocity

vectorially. It is well to use the planet's velocity a few days

after injection to account for the tiJb,e to reach the sphere of

influence from injection. This effects an angular correction of

a few degrees which considerably refines the initial guess. The

resulting velocity referenced to the starting planet is taken to

be the asymptotic velocity for a hyperbolic transfer from the in-

jection point to the sphere of influence.

4. Compute the injection velocity at the injection point (which

should be previously chosen or specified) to achieve the asympto-

tic velocity computed in step 3. This result is the initial

guess velocity.

Some caution must be used in this procedure to ensure that the

target point is accessible (if it is near a planet) by a hyperbolic

approach from the direction of the elliptical transfer. Also, the in-

jection point with respect to the launch planet must be chosen to make

the asymptotic velocity achievable by a hyperbolic transfer. Reference

3 gives all pertinent conic equations for these computations.

38-

CHAPTERIV

PROGRAMSTRUCTUREANDFUNCTIONALFLOW

The explanation of the program structure and functional flow
given in this chapter relates directly to the single-precision version.
The functional organization of the double-precision version is identi-
cal with that of the single-precision version, but the detailed pro-
gram structures are different in that the double-precision version re-
quires someadditional support subprograms.

The single-precision version is organized into a main control

program, designated as MAIN, and the following subprograms:

INTEG

ENC_N

C_VF¢

EPHEM

sc

PRINTT

TIME

AXB

Subroutine subprograms

Function subprograms

This chapter describes the primary functions of MAIN and each of the

subprograms and shows the program functional flow.

4.1 MAIN Proqram

The MAIN program establishes and controls the entire functional

flow. Figure 4-1 is the program functional flow diagram mechanized by

MAIN. The first operation is reading in and printing out the informa-

tion on the input data cards. This makes _vailable all input data in

original format for convenient reference.

All initialization operations on the input data which are un-

changed in a trajectory search are performed in the pre-initialization

functional block. These include conversion of times entered in days,

- 39-

0

LL

0
E
0

(J
E
::3,

IJ..

E
13

0

0_

I

(I)
11,.,

:3
01

LL

8

e-

4--

ti-

E

I-

"E ,.,.4

- r- .-

I.

II,-1
in,.l
l<J
II-I
i (/') j

T
,,-I

O

m,, I

>-

O

&

.9 I
o I

L- I_. I

< ____,,_I _ I
o 2)

i .

T r
c

i 0 I 0

_1 __
._=.=- I o
h- 0 I (J'_"o._, _

_ x_/
',7

8

hours, minutes, and seconds into seconds referenced to start time, set-

ting up invariant constants used in the program, initializing the

ephemeris computation subroutine (EPHEM), and printing an identifica-

tion record for the trajectory computation to be performed.

The initializing operations which are repeated at the beginning

of each search cycle include setting up phase-dependent constants,

initial conditions for the state and state transition matrix integra-

tions, and initialization of the Encke conic computation subroutine

(ENC_N). These are performed following the search cycle return point

designated as point A in Figure 4-1.

An initial point record is printed following the initialization

for each of the following three conditions: (i) Mode 1 is the opera-

ting mode; (2) the last search cycle in Modes 2 or 3; (3) each search

cycle if an input data control constant has been set to cause a print-

out each cycle of the search. This record has the standard informa=

tion described in Section 2.1.6, and it lists all trajectory initial

conditions.

Point B in Figure 4-1 is the return point on an inner loop in the

program which is recycled with each time step. The first operation in

this loop is the time step computation by the method described in Sec-

tion 3.5. This is followed by an endpoint proximity test to determine

if the trajectory end time is less than twice the time step from the

present time. If it is, the time step is modified to be half the re-

maining time and appropriate flags are set up to effect termination on

the following cycle. Otherwise, the next functional test is entered

immediately.

The special printout test determines whether a time point for a

special printout lies within the present time step. If so, the spe-

cial computations and printout occur as described in Section 2.1.6.4.

The numerical integration is performed in the INTEG subroutine

which in turn calls ENC_N to compute the conic position and velocity

used in the Encke method, EPHEM to compute the planet positions and

GRAVF_ to compute the gravitational perturbing acceleration and gravi-

ty gradient matrix used in the integration.

A phase test occurs at the end of each integration step as des-

cribed in Section 3.6 to determine whether the current primary body is

correct. If not, a phase change occurs, involving the determination

of the new reference body, computation of velocity and position of the

reference body, computation of velocity and position of the reference

bodies by the EPHEM subroutine, and printout of old and new phase in-

-41 -

formation as described in Section 2.1.6. In Mode 1 the normal time
step data printout follows the phase test immediately, if no phase
change occurs. The trajectory endpoint is indicated by a flag set ear-
lier in the endpoint proximity test. If the endpoint has not been
reached, the ENC_Nrectification test is performed, ENC@Nis rectified
if necessary, and a transfer takes place to begin a new time step. The
rectification test is simply described with reference to equation (3.3);
rectification must occur if

I_i> I00 (single-precision version)

Rectification is simply reinitialization of the Encke conic at the cur-

rent true state.

If the endpoint has been reached, an endpoint data printout occurs

if the operating mode is Mode I, or if this endpoint ends the last

search cycle in Modes 2 or 3, or if there is a command to print every

search cycle. This printout is followed by computation and printout

of the target point miss.

If the current cycle is the last search cycle, the trajectory com-

putations terminate for the present case by transferring program con-

trol to START to enable a subsequent case to begin. Otherwise, the

search computations are performed, as described in section 3.7, to up-

date the starting velocity. Then, if the operating mode is Mode i,

the search computation results are printed as described in Section

2.1.6 and control is transferred to START. Otherwise, the next cycle

of the trajectory search begins by returning to the initialization of

the new cycle.

4.2 INTEG Subroutine

INTEG performs the numerical integration of both the state and

the state transition matrices by the methods described in Sections 3.1

through 3.3.

INTEG is called by the MAIN program in both the numerical inte-

gration functional block and special data printout loop shown in Fig-

ure 4-1. The call statement is

CALL INTEG (H)

The argument H is the time step computed in MAIN. INTEG returns the

position and velocity increments _ and _ defined in Section 3.1 and

the A and B matrices defined in Section 3.3. This information, as

well as other information shared between two or more subprograms, is

4Z-

placed in C_MM_Nstorage.

INTEGin turn calls ENC_N,EPHEM,and GRAVF_.

4.3 ENC_N Subroutine

ENC_N computes the conic position and velocity used in the Encke

integration method. There are two primary branches in the subroutine,

one for rectification and one for computation of the conic state. The

omputation branch has two sub-branches, one for ellipses and one for

hyperbolae. The call statement is

CALL ENC_N (IENC)

The argument IENC is a control constant which selects the desired

branch. If IENC is i, the rectification branch is selected. Rectifi-

cation makes use of the current true state to determine a new oscula-

ting (Encke) conic to be used in all subsequent computations until rec-

tification reoccurs. If IENC is 0, the computation branch is selected.

If the Encke conic is an ellipse, the state computations are performed

by a normal method (Chapter 2, reference 3); if the conic is an hyper-

bola, the special formulation described in Section 3.4 is used.

All variables used and the conic state returned by ENC_N are

placed in C_MM_N storage. ENC_N is called by MAIN for purposes of

rectification and by INTEG for conic state computation. ENC_N in turn

calls TIME and GRAVF_ in the rectification branch and prints a recti-

fication message giving the time of rectification and identifying the

Encke conic type.

4.4 GRAVF_ Subroutine

This subroutine computes the right hand side of Equation (3.4)

used in the state integration _nd the gravitational gradient matrix

Gpr i and Gpert defined in equations (3.10) through (3.12) used in the

state transition matrix integration. GRAVF_ is called normally by

INTEG for these computations, and it is also called by ENC_N at each

rectification point to reinitialize the computations. The call state-

ment is

CALL GRAVF_ (UA, GF_RCE)

UA is a three-dimensional input vector corresponding to _ in equation

(3.4). GF_RCE is a three_dimensional vector which is the acceleration

(right hand side of equation (3.4)) returned by GRAVF_. All other

quantities used and returned by the subroutine are in C_MM_N storage.

GRAVF_ calls no other subroutines.

- 43 -

4,5 EPHEM Subroutine

This subroutine computes the planet ephemerides by the osculating

conic method described in Section 2.1.4. There are two branches, one

for initialization and one for computation. The initialization branch

establishes the osculating ellipses approximating the planet orbits

from the reference ephemerides entered as program input data.

EPHEM is called by MAIN for initialization and for computation of

primary body ephemerides at the phase change points, and by INTEG for

computation of planet positions for disturbing force computation. The

call statement is

CALL EPHEM (N, [EPH, UP, VP)

N is the identifying number of the planet whose ephemerides are to be

computed. IEPH is a constant controlling the following operations

according to the specified value:

2 - initialization

1 - computation of planet position and velocity (required

at phase change points only)

0 - computation of planet Dosition only (position only is

required in perturbing acceleration _nd gravity gradient

matrix computations).

UP and VP are, respectively, three-dimensional position and velocity

returned by the subroutine.

EPHEM calls no other subroutines.

4.6 PRINTT Subroutine

This subroutine does all of the normal printing for the program

described in Section 2.1.6. PRINTT is called by MAIN only. The call

statement is

CALL PRINTT(IPRINT,N_SC)

IPRINT is a control constant selecting the record format to be printed.

N_SC is a control constant which determines whether _SC_N is called

following the printout. PRINTT also calls the TIME subroutine. Fur-

ther detailed description is left to Reference i.

4.7 _SC_N Subroutine

_SC_N computes the osculating conic data described in Section

2.1.7. _SC_N is an optional subroutine; a control constant in the

program input data determines whether or not the subroutine is used.

_SC_N is called only by the PRINTT subroutine, and, if it is to be

- 44 -

used in the program, it is called each time a data printout occurs.
Further detailed description of the computations is left to Reference

i.

4.8 TIME Subroutine

This subroutine converts time, which is in units of seconds in

the program computations, into days, hours, minutes, and seconds. It

is used always for the purpose Qf printing time in the more useful

form. TIME is called by ENC_N and PRINTT. The call statement is

CALL TIME(TARG,JDAY,JHR,JMIN,XSEC)

TARG is the input time argument in seconds. The other arguments in

the call statement are, respectively, the d,_ys, hours, minutes, and

seconds returned by the subroutine. The input time argument is nega-

tive for trajectory integrations backward in time; however, the days,

hours, minutes, and seconds returned are always positive, and they

must be interpreted as the elapsed time from start in either the posi-

tive or negative direction as the case may be.

4.____9AXB Subroutine

AXB computes the cross product of two vectors. It is called by

MAIN and several of the other subroutines where vector products are

required in the computation. The call statement is

CALL AXB (A, B, VPR_D)

A and B are three-dimensional vectors, and VPR_D is the three-dimen-

sional vector product returned by the subroutine. The vector compu-

tation is

VPR_D = _ x

4.10 VMAG Function Subprogram

VMAG computes the magnitude of a vector. It is used throughout

the program wherever vector magnitudes are required in computations.

The specification statement is

VMAG(V)

V is a three-dimensional vector, and the subprogram returns the square

root of the sum of the squares of the three components.

4.11 6D_TB Function Subprogram

AD_TB computes the scalar product of two vectors. It is used

throughout the program wherever scalar products are required in compu-

tations. The specification statement is

-45-

AD_TB(A,B)

A and B are three-dimensional vectors, and the program returns the sca-

lar product A.B.
k

- 46-

APPENDI X A

DERIVATION OF NEW FORMULATION OF KEPLEI4'S

PROBLEM FOR HYPERBOLAE

The purpose of this Appendix is to derive the equations of the new formula-

tion in the form given in Section 3.4 and to show the improvement in the error pro-

pagation characteristics. The equations of the standard conic formulation of

Kepler's problem for hyperbolae given in Section 3.4 are repeated here for con-

venient reference:

Kepler's equation:

rO'vOr (:--01At = -AH + _ cosh AH-1 + 1+

State equations :

sin h AH (3. Z3)

renc(AH) = [1-a 0 (cosh AH - 1)Jr 0

v (AH) =- _sinh AH r + [1 a(cosh AH -1)Iv0 (3.25)
--enc rr 0 --0 -r

(In this derivation equations appearing in Section 3.4 will have Section 3 equation

numbers.)

The derivation begins with Kepler's equation. Let

t m =_a 5 At

AH
Expressing coshAH and sinh &H in terms of e

terms gives:

t m = -AH +_l_ + 1 +

(3.35)

-AH
and e and gathering like

e AH 11.!-O" v 0 _ (1 .t rO]]e -AH
+2L_ a j (A, 1)

47-

DefineIi 1 and K3, constants for a given orbit:

Z

- = + l (3.3 z)

2

K3 .vo { :_o} {rovo}= 1 + = - -l (A. z)

The equivalence expressed in these equations is readily established from the well

known energy integral for hyperbolae:

v 0 = b +

The following properties of IK

conic relations:

I and IK3 are also readily verified from well known

g
(1) K1K 3 = -e

Where e is the eccentricity of the hyperbola

Z g

e = 1 +_x-a- = +

h = 1SOXVoIangularmo_entumperunitmassi_orbit

r0 _0'Zo ez
(Z) K l > 0 always, since i + -- > for > 0

a v_

K 3 < 0 always for the same reason.

Make the following change of variable in (A. 1):

AH
e = 1 + x, AH = log(1 -i- x) (3. z9)

and use (3.3Z) and (A. Z) for the coefficients:

K I + K 3 K I

tm = - log(l +x) - Z + T (I + x)

Multiplying by 1 + x and clearing terms

{A. 3)

- 48-

(1 + x) tm = -(I +x} log (I +x}

Regrouping the terms:

K 3 K 1
- --2-- x + --2- x(l+x) (A.4)

-'2-- x + -t m x-t m

P.eferring to (3.3Z) and (A. Z}, define K z by

-(l+x) log(1 +x) = 0 (A. 5)

Then Kepler's

I:__0)KZ= Z -tm = 1+ -

equation becomes

2

r0 v0
t = -I -t
m _ rn

K
i Z

"-2- x +Kzx-(l+x) log(l+x) = t (3.30)m

K 1 can be computed with high precision by the appropriate choice of two different

methods, lfr 0. v 0 > 0, K I is computed by Equation (3.3Z) directly, If._.0, v0< 0,

then K I can be a small difference of the two terms in (3.3Z), and a more precise

computation is

The denominator of (3.33} is large and negative for this case.

K Z in Equation (3.30) can normally be computed precisely in regions where

(3. 30) would be sensitive to errors in K Z. K Z becomes imprecise when

t m _ 1 + , but then the '2- x term dominates, greatly reducing the sensi-

tivity to error in K 2.

There is, however, a case in which (3.30) is imprecise for small x. Consider

an outbound transfer with initial point near the peripoint. Then r 0/a is of the

, is very small. Thenorder of 1 x will be small for the first time step, and t m

K 2 is of the order of g, and t is a function of a small difference between them

- 49 -

secondandthird term on the left of {3.3) andthe second-orderfirst term.
Consequently,for the caseof small x {3.30) is reformulatedso that the left side
is separatedinto first, second,andhigher order terms explicitly. Webeginby
putting it into the form

x (A 6)x2 + (K2 - I) x + -_-+ x -(i +x) log(l+x) = tm

The last two terms in (A. 6) can be combined into the following power series

expansion:

oo)k2 3 -- xk (-i

x + g -(l+x)log(l+x) = x--_ (k+2) (k+3)

k=0

3
= x L (x) (0 < x< I) (A.7)

This relation is easily verified by expanding log (l+x) in a power series and com-

bining like terms on the left side. (A. 7) is positive and well behaved at x=0

Kepler's equation is finally expressed as

(K 2 -l)x + %_| x + L(x) = tm

The range limit is established simply by noting that (3. 30) is sufficiently precise

for larger values of x.

The state Equations (3. 24) and (3. Z5) are expressed as functions of x

directly by substitution of the following identities:

Z

x (A. 8)
cosh AH -1 =

2.
gx + x (A. 9)

sinh AH = 2--([+x)

The results are

r . _v r a xT +x" iv0--enc (x) = Zr 0 l_x r0 + a --r0 0 _ + 0

(3.3s)

__v'_-_ x a (3.39)v (x) = r + 1 - v
--enc rr 0 I + x -- 0 _r l_x --0

50-

Thepropagationcharacteristics of errors in the iteration variables in the
two formulations are developedfor a generalizedcomparisonin thefollowing man-
ner. Considerfirst an error in r (AH), 6r (AH) causedby anerror in

-- enc -- enc '

the iteration variable AH in Equation (5. 24) compared with an error in r (x),
--enc

6 r (x) caused by an error in the iteration variable x. That is, for a given trans---enc

fer time At we wish to compare the errors in the computed r (_t) obtained from
--enc

the two formulations. Eqs. (3. g7) and (3. 40) give 6 r (&H) and 6 r (x). They
--enc --enc

are rewritten here in the following forms:

6r_ enc (AH) = fl (AH) 6(AH) _r0 + fz(AH) 6(AH)_v0 (A. I0)

6r_ enc (x) = gl(x) 5xr 0 + gZ(x) 6x v 0 (A. 11)

where

a sinh & H
fl(AH) = - r%

fz(all) = _a r 0. _v 0 sinh AH + r0_- _ cosh _XH

z (A.lz)
2x+ xa/%

g 1 _x_ - 2r 2
o (1 +x)

2

_ a Zx+x 2 _ I +x+ x__
gz (x) 2_ r0" -Y-0 (i +x) z + r0 2- (1 +x) z

The co.variance matrices for the errcrs can then be written as follows:

EA H = [6 r enc(A H)- 6 ren c (& vl)][6 renc(A H)-6 renc-'_--_] T

E
X

2 (T r0T)= °-A H fl _-0 + fl f2 _-0v0 + -_0-- +

/ (A. 13)

= [6] [6rent(X))]__rent (x) - 5r (x) - 6r (x T--enc -- --enc

2{2 T r0T)0-x gl _-0r0 + glgz + v0

(A. 14)

These are matrix equations and the terms within the brackets are all constants.

will now be shown that E AH is related to E by a scalar constant.x

As was discussed in Section 3.4, the iteration variable errors 6(AH) and

6x-are uniformly distributed within the iteration tolerance:

It

51 -

6 (all) -7
0i--STV i I xl0

0 < 6.____x< 1 x i0 -7
-- X --

From these relations we can write

(3.42)

6(AH) : AH 6n (A.

6x : x6n (A.

where 6 n is a random variable uniformly distributed over the interval(0, 1 x 10

Then

2 2 2 2 [n 2 _.2]_AH 6(AH) _ (AH) 6 (AH) 2 Z (A.: - : - : 0-n

2 x 2 2 2 l0- = 6 -'6"-x" : x¢ (A.
X n

15)

16)

-7).

17)

18)

Substituting (A. 17) and (A. 18) into (A. 13) and (A. 14):

= { (T T) } (A. 19)
EAH (AH) 2 Cn 2 flZ_r0/_0T+flf2 r0z 0 +_v0_[0 + fzZ__0Z<) T

2 2/-0!-0T + glg2 + Z.0/--0 T + g2 -Y-0v0 (A. 20)E : x _ _,
X

The right sides of Equations (A. 19) and (A. 20) consist of the sum of three matrix

terms, each with a scalar coefficient. We now consider the ratios of correspon-

ding coefficients. The ratio of the coefficients of the first terms is (substituting

from (A. 12), (A.9) and (3. 29):

(AH) 2f 1Z (AH) 2 sinh 2 AH
=

2 . Z 2 (2x+x2) 2x gl x
4(1 +x) 4

(AH 2 (2x + x2) 2

4(I+x) 2 : (AH) z (I +x) 2

2 (2x+x2) 2 x2
x 4

4(1 +x)

(A.21)

52-

The ratio of coefficients of the secondterms is:

(&H) 2flf2

2_

x glg 3

s inh A H -_)" -V-o

\2(1 +x) _'Y-o ---

sinhAH+r0_cosh AH]

2x+x 2 1 +x+-_

+r0

(±H) z (1 +x) 2
2

X

eAH '_ 2

The ratio of coefficients of the third terms is:

(A. 2z)

(&t-I) Z f22

2
x g2 2

[._ r _ i 2(&H) 2 -r-0"-Y-0 sinh AH + 0 cosh &H

x £o'-!o]'i +x) z + o (1 +x) z

(AH) 2 (l+x) 2 __
2 = (AH) 2 eAH 2

x
(A. 23)

It is evident from (A. 21) through (A. 23) that EAH

multiplier:

and E
X

are related by a scalar

(_H e A H) 2 k2EAH = _H_I E = EX X
(A. 24)

The limiting behavior of k is

1) lim k = 1

A H----*0

2) For AH large, k---*&H

Consequently, the effects of iteration errors in the new x formulation are always

less than the effects of iteration errors in the A H formulation for all transfers

&H>0.

The same analysis can be carried through for 6Venc(AH} and 6__enc(X),with

the same constant ratio resulting between the corresponding covariance matrices.

53 -

APPENDIX B

TIME STEP FORMULA DERIVATION

This Appendix describes the derivation of the time step Equation (3.44),

repeated here for convenient reference:

h. = N [tr (GjGj T) - "_j + 1 (3. 44)

where h.j+l = tj+l -t.j is the time step between the jth and (j+ l)th points

G. is the gravity gradient matrix at the jth point
J

K is a constant

The method of derivation begins with the assumption that G. is constant over a
J

local region of the trajectory about the jth point. This permits a simple analytical

determination of the state transition matrix between the jth and (j + 1)th points. The

error ineadaterm of the numerically integrated state transition matrix is then

taken to be approximately equal to the 5th order term in the Taylor series expan-

sion of the analytical result, since the Nystr_m technique is accurate to fourth

order. Requiring that this error be less than 10 -8 times the analytic result yields

an expression from which Equation (3.44) can be generalized.

The assumption that the gravity gradient matrix is constant over local

regions is relatively good in the midcourse phase of a trajectory. In the phasesof

a trajectory near a planet G does change significantly within a time step. In this

case, Equation (3.44) is still used, but a simple first order differential correction

to h is introduced. The derivation suggests a value for the constant K; however,

K has been made a program control constant so that time step scaling can be done

by means of an input data card.

The derivation outlined above begins with Equation (3. 9)

6i:'. = G. 6r. (3.9)
--J J --3

The matrix G. defined in Equations (3. 10) through (3. 12) is real and symmetric.
J

It therefore has real eigenvalues, which may be positive, negative, or zero, and

eigenvectors which can be orthonormalized. Then, a diagonalizing matrix Q

- 55-

canalwaysbe foundto transform (3.9) into

6'£. : QT 69'. : QTG.Q 6z. (B.I)
-j --j J --J

where QTG.Q is a diagonal matrix with the eigenvalues of G. along the principle
3 J

diagonal

o 0]
k 1

QTGjQ : k z 0

0 k 3

(B.z)

In this form the three component equations of (lB. 1) can be considered separately.

Consider, for example, the first component equation:

6"z" 1 : k 1 6z 1 (B.3)

The following solutions are possible:

k 1 < 0:

6 z 1 (tj) sin_ 1 h
5z 1 (tj+h) = 5 .l(tj)cos4i l h +

6k I (tj+h) : 6z I (tj)cosq_ 1 h -_i 6Zl (tj) sin-_ 1 h

(B .4)

k = 0:
i

6z 1 (tj+h) : 6z I (tj) + 6k

6+.1 (tj+h) : 6{1 (tj)

1 (tj) h

(B, 5)

k 1 > 0:

6Z 1 (tj+h) : 6Z 1 (tj) cosh_ I h + _ sinh_ 1 h

6_ 1 (tj+ h) -- 6+.l(tj) cosh_ I h %_I 6Zl {tj) sinh_ 1 h

(B.6)

In these equations the state errors at tj are the initial conditions, and each of the

three component equations has one of the three solution forms above.

56-

Suppose for the moment that k I < 0 and (B.4) is the analytical relation be-

.+h and t_. The transition matrix for
tween the components of the state error at tj 3

these components is obviously

Ctj+h, tj

I

cos_l h _ sin "_l h

-_ sin %/-_ih cos _1 h

(B.7)

The Nystrom numerical integration for the state transition matrix is accur-

ate to fourth order. Therefore, the first term after the fourth order term in a

Taylor series expansion for each of the elements in (B.7) is approximately equal

to the error in the numerical integration. It is readily apparent that the larger

errors must be in the integration of the sine elements in (B.7), since the error is

of the fifth order in h while the error in the cosine element integration is of the

sixth order. The accuracy requirement is that the ratio of the error term to the
-8

lowest order term must be not more than 1 x 10 For each of the two sine ele-

ments in (B.7) this turns out to be

5
(_i h)

< 1 x 10 -8

h -

or

1

h < I. Z x I0 = .033

- z
(B.S)

The same analysis can be applied to the case k 1 > 0 with the same result

(B.8) for h. In the case k 1 = 0 the implication is that the numerical integration

should give negligible errors for any value of h within the interval in which the

initial assumption is valid.

To solve for the eigenvalues and eigenvectors of G at each time point is a

complex process and is not done in the program. The square root of the sum of

the squares of the eigenvalues is used in place of k 1 in Equation (B.8). [t may be

shown that

3

T) = _ 2 (B 9)
tr (GjGj _ k i

i=l

- 57 -

tr (GGT) is easily computedin the program. The fourth root of (B.9) is usedin

place of k1 in (B.8), a scalingconstantK in placeof the fixed constant,and(3.44)
then results.

The differenti&l correction to the time step in hyperbolic orbits is deter-

mined in the following n_anner. Note first that h varies approximately with r 3/Z

h _ a r3/2 (B.10)

Then

3 1/2 dr
dh_-z a r

3 h dr (B.II)
~Tr

Approximate dr by

dr _ v h (B. IZ)
r

Then the corrected time step is

3 h
h c = h + dh = h(1 +-_ T Vr) (s.13)

- 58-

APPENDIX C

ANALYSIS OF THE ERRORS REFLECTED BY

-l
THE GG AND RMS MATRICES

This Appendix presents an analysis supporting the discussion in Section

2. Z. Z. 2. The purpose of the analysis is to derive a method of inferring the order

of magnitude of the state transistion matrix term errors from the CC -l and RMS

,matrices, that is, to derive Eq. (Z. 6) and (Z.7) .

In the analysis, it is necessary to very carefully differentiate between com-

putational errors which enter the computations at different stages. The elements

of the state transition matrix C printed in the program output contain errors due

to round-off and truncation in the matrix integration. The order of magnitude of

these crrors is the quantity of interest. In the subsequent computations of the

CC-I and RMS matrices in the program, the term errors in C of course propagate,

but in addition there are further roundoff errors made in these calculations. The

intent of this analysis is to separate the term errors of C from these latter round-

off errors. The analysis proceeds as follows:

Define the term errors in the printed state transition matrix by the follow-

ing relation:

C.. = C.. + 6 .. i, j : 1, .'., 6 (C. 1)
U U t iJ

where

C.. is the printed (computed) ijTM element of C.
U

C.. is the true value of the ijTM element of C
Ut

.. is the absolute error in the ijTM element
IJ

The inverse of the state transition matrix c-l is obtained in the program, as shown

in Eqs. (7. I) and (Z. 7), by simple rearrangement of the elements of C and appropri-

ate sign changes. Define the term errors of C -I by the relation:

(C" l)rs l)rs t -l)rs
= (C- + (e , r,s = i, .'', 6 (C.Z)

where

- 59-

(c-l)rs

(C-_)
rst

(e -I)
rs

th - 1
is the computed value of the rs element of C

th -1
is the true value of the rs element of C

th -1
is the absolute error in the rs element of C

It is evident that the magnitude of each (c-l) is equal to the magnitude of some
rs

Cij, since the inverse matrix is obtained by rearrangement of the elements of C

and some sign changes.
-1

In the program each element of the CC matrix is computed according to

the formula

6

j=l

where e
ro.

J

is the roundoff error in the jth

(C. 1) and (C. Z):

term of the computation. Substituting

- = _ + e + (e-I)(CC l)km Ckj t kj j

j='l
+ e rojl (C'4)

Expanding (C.4) and retaining only first order error term gives

6

(CC-_km = _ Ckj t (c-l)Jmt +

j=l

6

5kin
+ Ckj t (e

j=l

l)jm+ (c-l). e .jm, kj
-]- 6 l

6kin +

6

CkJt

j=l

(c_l). [e_.. (e-l): m

Jrnt [kJ t + iC---_3_ t

ro

+ J

CkJt(c- 1

(c. 5)

where

6km =

- 60 -

]Eachelementof the RMS matrix is computed in the program according to:

(co -1)

(KMS] km =/6 km
(c.6)

Now we consider the effects of these errors in certain terms of the CC -1

-1
matrix. Eq_.(Z. 1) through (Z. 3) express CC in terms of the M,N,S, and T sub-

matrices of C:

(z.z)

I]
_N T

C -I = (Z. Z)

_S T M T

(MTT -NsT) (-MNT +NMT) 1cc- 1 : (z. 3)

[(ST T -TS T) (-SN T +TMT)j

C. 1 Assessing Magnitude of Matrix Multiplication Round off Errors Only

Consider first the upper right and lower left submatrices of Eq. (Z. 3). It is

not difficult to verify that the diagonal terms of these submatrices _i_zldbeide_Xically

zero regardless of the term errors 6ij and (e-1)rs in the elements of C, except

for roundoff errors which occur in the computation of these diagonal elements.

For example,]Eq. (C. 5) gives for (CC-1)14:

(CC -I) : [C]+ [CIzt(E-I)z4+(C-I)z4 EIZ + Eroz]14 iit(6-i)14 + (C-i)14t¢II + 6rol t

+ 13t(6 i)34 + (c-l)34t613+ero3 + Cl4t (6 i)44 + (c-l)44t614+6ro

+ C15t(6-i)54 + (C-I)54t 15 +6ro 5 + C16t(6 64 6 +6ro 6

(C. 7)

61 -

From Eq. (Z. Z) it may be seen that

(C -1) =14 -C14 =_" (C-1)14
t

(C -1) = =
24 -C15 =_" (c-l)z4t

(C -1) =
34 -C16 =_" (C-1)34t

= -C 1 ,
4 t

-C15 t,

= -C

16 t'

C
11 t'

(C -I) =
44 CI1 =_- (C-1)44t =

(C-i)54 = CIZ ----l_-(C -I)54 t = C IZt,

(c-I) : =,-- (c-l) :
64 C13 64 t C13 t'

(_ -1)14

(6 -1)z4

(6 -I)34

-i
(6)44

(6 -1)54

(6 -i)64

= -6
14

= -6
15

= -6
16

= 6

ii

= 6
IZ

= 6
13

(c. 8)

Substitution of the conditions (C.8) into (C.7) gives

6

(cc-1) = L 614 ro.

j= 1 J

(c.9)

the other terms in (C.7) canceling out pair by pair. The conclusion is that (CC- ½14

contains the effects of only the roundoff errors made in the matrix multiplication
-1

process, and no effects of the term errors in the C and C matrices. We would

also expect that the roundoff errors in (C. 9) would cancel out pair by pair also, if

the computer were to make equal roundoff errors in the positive and negative mem-

bers of each pair. That this is not true is an observational fact from the program

data. The conclusion is that the complementary arithmetic used by the computer

causes unequal errors in the positive and negative members of each pair.

We express (C.9) in terms of the relative roundoff error in each term:

where

6 T j(CC-1)14 = Z Clj t (c-l) roj

j= 1 J4t ClJt (C-1)J4t
6

ro.

is the relative roundoff error in the jth term.

C.. (C- 1)
13t J4 t

(c. lO)

This facili-

tares a simplifying assumption in the analysis. It is a fact that the relative round-

off error in each term always lies in the interval (0, 1 x 10-8). We assume that

6Z-

2',

the relative roundoff errors are independent stationary randomvariables with identi-

cal statistics over this interval. This assumption can certainly be attacked, since

the two roundoff errors from each pair of terms in (C.9) are functionally related.

However, it certainly should be valid for establishing a limit to the order of magni-

tube of the round off errors.

2
Let _rel denote the variance of the relative round off errors. We also

-I
assume that (CC)14 is an unbiased random variable. That this assumption is in

fact good can be verified by examination of a typical Mode I trajectory computation.

the second order statistics of (CC-1)I 4 can be written fromThen, (c. 10) as

6

Z [(C- l)J4t] g Z
Z = C

-1)14 j= 1 lit _rel

6

,cl,]_el el jr j4 t
j=l

(c. 11)

From Eq. (C.6), if (CC-1)14 is an unbiased random variable, then (RMS)I 4 is

likewise. Therefore, from (C.6) we can write

6

2 :[cl t,cl,]Gr(CC_ 1 =
) 14 (RMS) 14 j" = 1 J 4t

(c. lZ)

Finally, from (C. 11) and (C. lZ)

2 2 (c. 13)
ffrel = _(RMS) 14

The above analysis can be repeated for the other five terms of the upper
-1

right and lower left (3 x 3) submatrices of CC Eq. (C. 13) results in each case

with an appropriate change of subscripts. The conclusion is that the variance of

the relative roundoff errors can be estimated directly from the appropriate RMS

matrix elements.

C. 2 Assessing Term Error Magnitudes

All elements in the CC-1 matrix, other than the six considered in the

analysis above, contain both term errors and matrix multiplication roundoff errors,

These are shown explicitly in Eq. (C. 5). We rewrite (C. 5) as follows, separating

- 63 -

the relative roundoff errors from the term errors:

6

(cc-l_¢rn- 6 km= Ckjt
j=l (C _rnt [Ckjt(C_1)j tj

{ 16 _%_L+ (c.14)-:_ -I (_-i)"m

+ g Ck3t(C)Jn:t]
j=l [Ckj_ (C- light j

We assumed above that the relative roundoff errors (first ter n the right in
Z

(C. 14) were independent, unbiased, and characterized by the variance _rel'

Similarly, we assume that the relative term errors (second term on the right in
2

(C. 14) are independent, unbiased, and characterized by a variance 0-t. These

assumptions are valid only for order of magnitude analysis. By means of these

assumptions we can write from (C. 14):

2 = _ mlZ _i 2_(CC- I)k m CC-I) _• _:_ _ = (CC)_m

6[j2(: 2 + 2:2t) __jCkJtrel (C -lIra (C.15)

j=l

Eq. (C. 1g) can be generalized for the present case in the form

6

--[Ckj t -I rr%]2z z \ (c)j
(cc-l)krn = Cr(RMS)km j_l"=

(C. 16)

and we then conclude that

Z Z Z (C.17)
ffrel + Z 0"t = _ (RMS) km

We note that the six main diagonal elements of RMS are in general biased,

since the corresponding elements of CC -1 are expected to be unity. This must be

considered in using (C. 17)

In summary, the RMS matrix allows an estimate of the order of magnitude

of the term errors in the following manner• From the diagonal elements of the

64-

upper right and lower left (3x 3) submatricesof RMSan estimateof the variance
2 -1

Ore 1 of the relative roundoff errors in the CC matrix multiplication can be ob-

tained by using Eq. (C. 13). Then, from other elements of the RMS matrix an
2

estimate of the variance 0- t of the relative term errors can be obtained by using

(C. 17). An example of the procedure is given in Section 2.2.2. 2.

- 65-

Io

_o

3.

4.

5°

REFERENCES

McDonald, W.T., " Special-Purpose Space Trajectory Program for

Guidance Studies-User's Manual, " M.i.T. Experimental Astronomy

Laboratory Research Note, RN-8, July 1965.

Stern, R.G., "Interplanetary Midcourse Guidance Analysis, " Vols. I

and 11, M.I.T. Experimental Astronomy Laboratory Report, TE-5,

June 1963.

Battin, R.H., "AstronaUtical Guidance, " McGraw-Hill Book

Company, 1964.

Peabody, P.R.,Scott, J.F.,Orozco,E.C-_, "JPL Ephemeris Tapes E9510,

E9511, and E9512, " Technical Memorandum No. 33-167, Jet

Propulsion Laboratory, 1964.

Henrici, P., "Discrete Variable Methods in Ordinary Differential

Equations," John Wiley and Sons, Inc., 1962.

- 67 -

I_[_.ECEDING F%C',: r_ ,._.=,-,-.-,--, ._,., i,iOT FILMED,

